In Vitro Osteogenic Properties of Two Dental Implant Surfaces
نویسندگان
چکیده
Current dental implant research aims at understanding the biological basis for successful implant therapy. The aim of the study was to perform a full characterization of the effect of two commercial titanium (Ti) surfaces, OsseoSpeed and TiOblast, on the behaviour of mouse preosteoblast MC3T3-E1 cells. The effect of these Ti surfaces was compared with tissue culture plastic (TCP). In vitro experiments were performed to evaluate cytotoxicity, cell morphology and proliferation, alkaline phosphatase activity, gene expression, and release of a wide array of osteoblast markers. No differences were observed on cell viability and cell proliferation. However, changes were observed in cell shape after 2 days, with a more branched morphology on OsseoSpeed compared to TiOblast. Moreover, OsseoSpeed surface increased BMP-2 secretion after 2 days, and this was followed by increased IGF-I, BSP, and osterix gene expression and mineralization compared to TiOblast after 14 days. As compared to the gold standard TCP, both Ti surfaces induced higher osteocalcin and OPG release than TCP and differential temporal gene expression of osteogenic markers. The results demonstrate that the gain of using OsseoSpeed surface is an improved osteoblast differentiation and mineralization, without additional effects on cell viability or proliferation.
منابع مشابه
Adult Stem Cells Properties in Terms of Commitment, Aging and Biological Safety of Grit-Blasted and Acid-Etched Ti Dental Implants Surfaces
Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the...
متن کاملRelease of VEGF from Dental Implant Improves Osteogenetic Process: Preliminary In Vitro Tests
INTRODUCTION During osseointegration process, the presence of an inflammatory event could negatively influence the proper osteogenetic ability of the implant surface. In order to reduce this possibility, an implementation of angiogenetic event through the release of Vascular Endothelial Growth Factor (VEGF) can be a tool as co-factor for osteoblastic differentiation. In this paper, novel dental...
متن کاملThe Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells
Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proli...
متن کاملThermal and Surface Changes of Dental Implants Following Use of Rotary Instruments and Piezoelectric Devices for Implantoplasty: An In-Vitro Study
Objective: Peri-implantitis is an irreversible inflammatory reaction in the soft and hard tissues around a functional implant . One of the treatment approaches of this disease include smoothing and polishing the rough surface and removing threads on the implants using rotary instruments, which is called implantoplasy. Clinicians should perform implantoplasty with caution because it may raise ...
متن کاملReality of Dental Implant Surface Modification: A Short Literature Review
Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012